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Sauer recently proposed a new approach to hyperbolic problems involving

more than two independent variables. In the case of plane, unsteady problems

depending on time t and Cartesian coordinates x,y he finds the characteristic

lines of the governing equations in the x.t plane and develops a finite

difference scheme based on these lines and lines parallel to the y axis.

In this way a two dimensional unsteady problem is solved as a sequence of

one dimensional problems in planes y - constant. This scheme is much simpler

than earlier schemes based on bicharacteriatics. The present report describes

the scheme ad discusses its application to underwater shock wave problems.



1. INTRODUCTION

Many important problems connected with the theory of underwater

explosions depend on two space variables and time. In their non-linear

formulation these can be solved numerically by the method of characteristics.

When more than two independent variables arise, the method of characteristics

can be presented in a variety of forms and it appears now that some of the early

numerical schemes proposed for the method were unnecessarily complicated. The

present report describes some schemes which have recently been developed in

Germany, with particular emphasis on Sauer's Near Characteristics Method

(ref. 1), which seems to be well suited for application to underwater problems.

After considering the method in its general aspects, it is worked out in detail

for application to two problems: (1) the propagation of a spherical explosion

in an ocean with a variable density gradient; (2) the reflection and refraction

of a spherical explosive wave at the oceaw surface.

Methods of Characteristics developed earlier for two dimensional unsteady

flow problem were based wholly on the use of bicharacteristics. Those proposed

by Thornhill (ref. 2) and Butler (ref. 3) were based on the following approach.

Starting with the Eulerian equations for unsteady flow the equations defining

bicharacteristics are determined, together with the compatibility conditions

satisfied along them. It is then assumed that initial data are prescribed on

some space-like initial surface. To construct conditions at a new point,

bicharacteristic lines are drawn backwards through the point to intemeat the

initial surface. Along each of these bicharacteristic lines the compatibility

conditions are written as difference relations. These are simultaneous equations

to determine the values of the unknowns at the new point. As many bicharacteristic

relations are used as these are unknown dependent variables. Butler has applied
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his method to calculate the hypersonic flow past a pointed unsymmetrical body

(using the analogy between hypersonic small disturbance theory and unsteady

flow theory). The calculation was a notable achievement, although the method

is more complicated than those developed later. The chief disadvantage of the

method is that the directions along which difference relations are established

follow no particular pattern. Further, it is questionable whether bicharacter-

istic relations on Mach cones can be used more than twice between an initial

surface and a new point.

Methods were developed for steady flow problems by Coburn and Dolph

(ref. 4) and Holt (ref. 5) which only employ two bicharacteristic relations

at each point. These, together with a third non-characteristic relation and

the streamline direction, are related in a definite way to prescribed conditions

on an initial surface.

The methods developed recently in Germany also use only two bicharacter-

istic directions (or in the case of Sauer's method two general sections of

the local Mach conoid) but the choice of these is related to the local flow

geometry rather than to initial conditions. The first of these methods was

proposed by Bruhn and Haack (ref. 6) and later modified by Schaetz (ref. 7).

The basic approach is to replace the derivatives occurring in the equations

of motion with respect to the original independent variables (for example two

Cartesian coordinates and time) by directional derivatives. These are chosen

so that, in the transformed equations, the number of directions is reduced to

a minim. When these transformed equations are replaced by difference

equations, the latter can be solved with the minium of algebraic operations

and hence with the least expense of program ing time.

2n the method developed by Schaests for unsteady flw the equations of
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motion are transformed to coordinates based on the following local directions:

(1) the direction of the resultant velocity.

(2) the direction of the particle path.

(3) bicharacteristic directions perpendicular to the resultant

velocity direction.

Schaetz calls his method optimal since it employs the minimum number of

directions. It is a much simpler scheme than those based entirely on

bicharacteristics - of the four directions used three are in the same plane.

However, these directions do change with the flow direction. Sauer's Near

Characteristics Method (ref. 1) avoids this drawback. It is also an optimal

method (using only four directions) but uses a fixed coordinate direction

as one of these. The plane containing the other three directions is always

in a fixed direction (normal to the fixed coordinate direction), two directions

are sections of the local Mach cone on this plane, the third is the projection

of the velocity vector on the plane.

Using Sauer's approach the method of characteristics for two

dimensional unsteady problems reduces to applying the one-dimensional method

in a sequence of coordinate planes. This makes it easier to control than methods

based on many spatial directions and easier to use for interpolation.

The advantages of Sauer's method are illustrated by a discussion of

its application to the two problems mentioned above. The first is most con-

veniently referred to spherical polars and is partly a finite difference method

while the second is an initial motion problem solved by expansion in series

and referred to cylindrical polar coordinates.

2. GZXNEAL FORM OF SAUER'S NEAR CHARACTERISTICS METHOD

Consider a system of m quasilinear partial differential equations of

the first order
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Ak ul hk 2.1Akj t biJ &xi 2.

where

j = .... m, k l, .... m, i 1 ..... n

and n + 1 is the number of independent variables (including the time t). The

k kcoefficients akj, bii and h are functions of t, x and n.

We rewrite equations 2.1 so that only derivatives with respect to

t and x1 occur on the left while all remaining derivatives, together with

terms hk are put on the right. We then multiply each equation by a factor

OTk and add the resulting equations. We shall obtain the equation

A-L + B1 u l + A 2-C2 +  B2  1U2

C ~ x1 - )X1
2.2

+ + A + H
MI

where

A i n kak

J ~k

B -0 b k
j k ij

H is a function of 0t,... 0 xm , . . .. Xn amd contains derivatives with

respect to x2l .. ...x.n
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We now choose 0-1, ... Cr so that the directional derivatives occurring
1' m

on the left of equation 2.2 are all the same. The common direction is

defined by

dx. B1  B
1 A1...................- Am

dt A 1A

dx2  = . .................. dx - 0 2.3

Equation 2.3 then leads to m equations

B I - A1  B2  - TA 2 .......... Bm - A- - 0 2.4

to determine , .... O. These will give non-trivial solutions only if1' a

the determinant formed by the coefficients of O1' Or ..... 01- is zero.1' 2 m

The determinantal condition gives r values of T(p = 1,... r). In the

case of hyperbolic equations 2 <_ r < m and the introduction of the values

T into equations 2.4 leads to m independent equations of type 2.2. These

may now be written

k du ........ + Ak du

2.4

p 1, ... r. k I, ... a

Equations 2.4 are in every way equivalent to the original equations 2.1 and

are transformations of these in terms of near characteristics. The effect

of the use of near characteristics is to reduce the number of directional
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derivatives in each of the original equations by one, a significant

simplification. In the case of one dimensional unsteady motion, of course,

this transformation results in each equation containing one directional

derivative only.

3. UNDERWATER EXPLOSIONS IN AN OCEAN WITH A VERTICAL DENSITY GRADIENT

This problem is conveniently referred to spherical polar coordinates.

The Eulerian equations of motion, for rotational flow, may be written

+ +w 2  wdu 3.1

r~tr prrQ

+u1_ --a a w - wa cotO,+ a . . ..."~ r r
3.3

rpa

Here, t is the time measured from. the instant of initiation, r is distance

measured from the center of the explosion and B is the angle between a vertical

axis through the center ad the radius.

altiply 3.1 by c1, 3.2 by "2, 3.3 by " and add

The3

Then

lri- t + (ru+l3 r + IP& 6 + pa P r 3.4

2 6t 2r
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where H is the sum of the terms on the right of the factored equations. The

condition that the directional derivatives on the left of 3.4 should all be

the same is

0- u + O. Urla + 0u 0u
1 +O 3u 1 3 '2

Hence,

(u - T) 0" + a0T3  M 0

ar I  + (u -T) o-3  = 0

(U - T)o- -

For non-trivial values of 07 T TI' T must satisfy the equation

(u -+( (U- '))2  _ a - 0

Hence

r""u 3.5

or Tu+a 3.6

The equations of the near characteristics are then

A . u + a (Traces of Mach Lines) 3.7dt
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dr
t u (Projections of Particle Paths) 3.8

Denote directional derivatives (w.r.t. time) in the three characteristic

conditions by suffices 1, 2, and 3 respectively. Thus,

d -(=-) " + (u + a)

~dl +(u a

d

(tt 3 TF+ U-

Then the near characteristic forms of equations 3.1, 3.2, 3.3 are obtained

by putting d. 1, 3Or 1, M = 0; Cr r an "O, 9-m 1. We

obtain

du,.+ w2  w >i . L
dt'l + padt)l mr -; r r

in 2a FA cot 0 - w 3.9

r r rpa

du . 1 V 2

(t 2 iad t )2 Yr t + O

+ 2ua + wa cot a + w 3.10
r r rpa
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dw w v w uw 1~ 3.11
rd3 r pr O

To start the method we need to know the complete disturbance field at

some time t - t . The determination of these initial conditions will depend
0

on the type of explosion considered. In general we may suppose that they

are given in the form

u - u(r, 0) etc. at t - t0  3.12

To determine flow conditions at a later instant to + A t, at a new

point Q(r0 , 0o ) we proceed as follows: (1) Calculate all flow conditions

at the point P, which is the projection of Q on the t - t0 plane. In
d.1 d d

particular, determine the characteristic directions d () 2  (j)3 at

P. (2) At Q draw lines with these characteristic directions to intersect

the plane t - t at points A, B and C respectively. Note that these lineso

all lie in the plane 0 - 0 . (3) Write equations 3.9, 3.10 and 3.11 as

difference relations along AQ, BQ, CQ respectively. The terms on the right

of these equations are evaluated at A, B and C respectively. Solve these

equations to determine the values of u, p, and w at Q.

In the general case these equations need to be supplemented by the

equation of state and the condition that entropy is conserved on particle

paths. The latter can be written in characteristic form

dS . 6S
(t) 3 7 - 3.13

which can be solved a a difference equation along CQ. In water the Tait
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equation of state

p- B(S) I 0 7 - A(S)j 3.14

may be used. In general B and. A can be taken as constant and equation

3.13 can be dropped.

This crude difference process can be improved. Once first approximations

to the values of flow quantities at Q have been determined equations 3.9 - 3.12

can be solved again along QA, QB, QC using mean differences.

At each stage of the integration shocks and other boundaries (e.g.

contact discontinuities) must be fitted. The procedure for doing this is

similar to that used in one dimensional flow but must be applied in a series

of planes e - constant.

Three sets of initial conditions can be used, corresponding to three

types of explosion. The simplest corresponds to a pressurized sphere which

is burst symmetrically at time t - 0. Secondly, we may consider a spherical

charge of explosive initiated at its center; in this case the blast propagation

is preceded by a spherically symmetric detonation phase. The initial field

of disturbance in both these cases can be calculated by series expansions

similar to those used by Holt (ref. 8) to analyse the initial behavior of

spherically symmetric explosions. The coefficients of these series will now

depend on 0, as well as r and t. For small times after initiation, when

the vertical density gradient is small, it is convenient to use Fourier

series in 0.

Thirdly, nuclear explosions should be considered. These are determined

from perturbation of similarity solutions and have been treated extensively in

the book by Korobeinikov, Mel'nikova and Ryazanov (ref. 9).



11

4. REFLECTION AND REFRACTION OF A SPHERICAL SHOCK WAVE AT THE OCEAN SURFACE

The problem of reflection of a spherical explosive wave at a solid plane

surface has been solved by Vasil'ev (ref. 10). Series expansions were used

in powers of time, measured from the instant the wave first hits the surface,

and radial distance, measured from the initial point of contact of the wave.

By retaining terms in the series up to the fourth degree the shape of the

reflected shock wave and the values of pressure and density behind it can

be worked out accurately up to the stage when the incident shock makes an

angle of 40 with the plane surface.

This suggests the investigation of a more difficult problem, the

reflection and refraction of a spherical explosive wave at a free surface,

especially the surface of the ocean. If both the ocean and air above it

are treated as uniform media and if a spherical explosion is detonated some

distance below the surface, the resulting wave, on reaching the surface, will

be partly transmitted as a shock into the atmosphere and partly reflected

as an expansion wave back into the ocean. In any meridian plane this expansion

wave, at a given time, is centered on the point in the surface then reached

by the incident wave. The ocean surface is disturbed by the refraction process

and it is necessary to determine the shape of the transmitted wave, the dis-

tortion of the ocean surface, and the field of interaction between the

reflected expansion wave and the incident explosive wave (see Figure 2).

To treat this initial motion the governing equations are written in

cylindrical polars.

Momentum

C+w -ur p 4.1
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- +4.2

Continuity

ktrovy conservation

'CIS 4.4

p- B(S) tp -A(S)1 4.5

In water B and A are taken to be constants; y - 7

(S-s)/C
InairB e !v, A O, y 1.4

The z axis is taken on the vertical line through the origin of the

explosion. The radial coordinate r is measured from the point on the ocean

surface where the spherical shock is first in contact.

To determine the field of disturbance near the point (r. 0) it is

convenient to introduce a reduced time -r. This is measured from the instant

when the incident wave reaches the point (r, 0) rather than the Iastant of

initial contact.

If U(R) is the value of the incident shock wave velocity (R is masured

from the center of the explosion) the point of intersection of the ncident

shock with the free surface is moving with velocity

Ul " "r - U(h) + L 2(hU'(h) - U(h)) 4.6
U1 dt hj 2 h 2 () 4.
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where h is the depth of the center of the explosion

The reduced time T is therefore,

r t~t1t t -1

2
or t + -- (hW(h) - U(h)) ... 4.7o(h) 2 hU2 (h)

In equations 4.1 - 4.4 change independent variables from r, z, t to r, z, r.

Then

+ kr 4.86r 6 r +  krT

(neglecting higher order terms in r)

where

k - h U'(h) - U(h) 4.9
h U(h)

4.10

4.11

The transformed equations are to be expanded in series of powers of

r. To determine the lowest order terms in these expansions we may neglect

2
terms of order r . Now u is of order r near r - 0 and we may therefore

neglect kru (and kr
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The equations become

+ w - . - 4.12

p 4.13

+ r .'2 4.15

We now write equations 4.12 - .14 in near characteristic form. The general

linear combination of equations 4.12 - 4.14 is

C- + Ojw~ + w 3 +T s

+ C2 +( Cvw+ Crpa )z

-- (Ulu + 0'3pa 2  t ~ - rpa2  4.16

The near characteristic conditions are determined by the conditions

1 3 11 3 O~kffr0"
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Hence

(w- X) o -o

kr o + 2-- ,o- + - + (w-,) - o

(w 2 p a

(v r)2p OS 0

For non-trivial 1, 02 03

(w-X) 0 0

kr 1 (w - X) , 0
P P

0 (w - X) pa

Hence

X w (particle path direction)

or - w + a (ray directions) 4.17

With A- w take a, - 1, 0 - krw, ( S 0

Then equation 4.16 gives

du +  k ('AR) + kr (!N)
dt3 p dt 3 dt 3

- -Ju - - krwu 4.18P 6
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d ) +_ 4.19where (dj) 3  " +

With X-w+a take -0-0, 0 272 1, 0 +1/(pa)

Equation 4.16 then reduces to

+ p )2p + (A)1,2w + u8 + r 4.20-a dtl, tl2ar P

d
where (d l,2 " + (w + a) 4.21

Equation 4.15 can be written

"dS 6 - 4.22

Equations 4.18, 4.20, 4.22 are in the required near characteristic

form. To determine the initial flow pattern shortly after the incident

wave first hits the ocean surface we expand the dependent variables in powers

of r, for example,

p M Po(t, z) + r pl(t, z)

and retain terms up to order r. We then obtain equations for the coefficients

written in characteristic form and these are solved in series of the type

z + t2
Po 0 0 j + p~'
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starting with the zero order coefficients. These expansions are very similar

to those carried out for the spherical explosion by Holt (ref. 8).

The detailed calculations for both these problems are now being

carried out and results will be published in later reports.
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Figure 1. Difference Scheus in Near Characteristics Mlethod
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Figure 2. Reflection and refraction of a spherical shock wave.

ACA' Transmitted shock.

ADA' Disturbed ocean surface.

ABA' - AFA' Reflected expansion wave.

ABP A'B' Incident shock.


